Stochastische Theorie von Transportprozessen in
ungeordneten und fraktalen Systemen
Uwe Renner
Dissertation A, Universität Leipzig, Juli 1992
(PDF-Datei, rekonstruiert aus den Original-LaTeX-Dateien)
Inhaltsverzeichnis
1. Einleitung
2. Grundlagen
3. Ungeordnete Systeme
4. Fraktale und Renormierung
5. Chemische Reaktionen
6. Ausblick
A. Weitere Beispiele
Stichwörter: Fraktal, anomale Diffusion, Wanderungsdimension, Funktionalgleichung, Renormierung, fraktionaler Kalkül, gebrochenzahlige Ableitung, CTRW, Sprungprozesse, Wartezeitdichte, mittleres Verschiebungsquadrat, Laguerre-Polynome, Mellin-Transformation, Fox-Funktionen, Reaktionsprozesse
Referat
Es wird die anomale Diffusion in ungeordneten und fraktalen Systemen betrachtet. Die Verwandschaft beider, ausgedrückt durch die von zwei verschiedene Wanderungsdimension, liegt im besonderen Skalenverhalten der Wahrscheinlichkeitsdichte für den Aufenthalt des Teilchens bzw. des mittleren Verschiebungsquadrates. Zur detaillierten Untersuchung des Diffusionsprozesses wird ein Formalismus zur Beschreibung von Sprungprozessen in stetiger Zeit verwendet. Im Fall ungeordneter Systeme wird die Wartezeitverteilung und damit die Wahrscheinlichkeitsdichte für den Aufenthalt des Teilchens bestimmt. Die Dimension der Trajektorie in solchen Strukturen kann auf einfache Weise ermittelt werden. Außerdem wird eine Verbindung zum fraktionalen Kalkül hergestellt. Für endlich ramifizierte Fraktale wird ein allgemeiner Formalismus zur Bestimmung der Wartezeitverteilung und der Wanderungsdimension vorgestellt. Dieser ist in sich geschlossen von der Aufstellung einer Funktionalgleichung im Laplace-Raum bis hin zur Darstellung im ursprünglichen Zeitbereich durch Laguerre-Polynome. Als wesentliche Methode wird die Renormierung der Wartezeitverteilung verwendet. Ausgegangen wird von der Generatorstruktur des Fraktals. Die Information über die Transfereigenschaft zwischen den Gitterpunkten ist hierbei vollkommen ausreichend. Zur Verdeutlichung der Vorgehensweise sind zahlreiche Beispiele enthalten. Die Ursachen eines anomalen Verhaltens bei chemische Reaktionen, ausgedrückt durch einen nicht exponentiellen Charakter des zeitlichen Zerfalls der Stoffe, wird ebenfalls untersucht. Dabei bedient sich der Autor einer stochastischen Betrachtungsweise. Ausgangspunkt ist die Bestimmung der Wartezeitverteilung für den Umwandlungsprozeß, um diese in einer einheitlichen Theorie von Diffusion und Umwandlung im Mehrzustandsformalismus berücksichtigen zu können. Auch hierbei wird eine Renormierungsmethode verwendet. Die verzögerte Ausbreitung eines Stoffes aufgrund von reversiblen Reaktionszyklen kann bei Fraktalen explizit gezeigt werden.
|